
131

International Journal of Economics and Law, Vol. 3, No. 7 (2013)

A DESIGN PATTERN BASED TECNIQUE FOR RUNTIME
OBSERVATION, MEASUREMENT AND REPORTING

Radonjic Vojislav D.1, Bashardoust Tajali Soheila1, Arnold Dave1,
Corriveau Jean-Pierre1, and Mihajlovic Radomir A.2

1Carleton University, Ottawa, Canada, radonjic@acm.org
2NYIT, New York, NY, USA, rmihajlo@nyit.edu

Abstract: This paper describes a technique based on the widely accepted concept of design patterns,
with a twist: rather than it’s conventional use as a forward engineering tool, it is used in the opposite
direction, as a runtime observation, measurement and reporting tool.

Keywords: Software engineering, model driven engineering, design pattern, run time observation,
design variant selection.

1.	 INTRODUCTION

Modern software engineering promotes modeling of requirements and corresponding
design, and, to a limited extent, traceability of requirements into design and implementa-
tion. Broadly, the techniques and tools associated with development and use of models
are called Model-Driven Engineering (MDE) or Model-Driven Development (MDD).
We can think of software designers as bridge builders from the problem world of require-
ments to the solution world of various candidate systems. Design patterns have emerged
as important tools for documenting and sharing the ‘bridge building’ experience of span-
ning from the side of requirements (scenarios and features) to the side of implementations
(C++, Java, various run-times). Like craftsmen in other disciplines, software designers
place great importance on their tools, and judging by the large number of copies of the
GoF catalog [3] sold, and by the ubiquity of these patterns in newly developed systems,
these craftsmen regard design patterns as one of their essential problem solving tools.
Design patterns, however, remain a challenge for the modeling community. The core pat-
tern conceptualization – the often repeated ‘a design solution to a problem in context’ – is
considerably more complex. We go in some detail to illustrate that in [1] in the example of
the Factory Method pattern, and more broadly the creational family of patterns.

132

A DESIGN …Radonjić V., Bashardoust T. S., Arnold D., Corriveau JP., Mihajlovic R.

Beyond reuse and comprehension in early software development phases, the question is
can design patterns be helpful in software quality assurance, for individual systems, a fam-
ily of systems, or across generations of related system? Our answer is yes, assuming we
have 1) a model that is precise enough to be a basis for observation and measurement,
and 2) a corresponding tool to carry out the observation and measurement and generate
evaluation reports.

2.	 CHALLENGES MODELING DESIGN PATTERNS

Design Patterns and their use are challenging to represent with existing modeling tech-
niques [1]. In particular, it is not clear how we can evaluate a decision made in selecting a
given pattern and a given variant of that pattern. The first step is making visible the space
of choices and the criteria for selection by modeling the content of a pattern description.
Helm et al. [5] present the ‘root’ modeling attempt at representing reusable and imple-
mentation-independent object-oriented designs. They chose precision over ease of use
of the model by the target audience, the day to day developer: the result was few users. A
few years on, with the lesson learnt, a more accessible and informal, template based model
was used to represent the GoF design pattern catalogue [3]: the biggest selling software
engineering book to date [9]. Our approach, in essence, aims to achieve the precision of
the contract model, with the ease of use of the GoF model.
Design Patterns are complex abstractions that span from requirements through design to
implementation, with variability at each phase, their use is challenging to model because
of the following:

- Traceability [12] from use cases to variations and their implementations,
- Variability modeling [13] in analysis, design, and implementation,
- Interaction between traceability and variability, and
- Evaluation of selected variants relative to intents and detailed design properties, and

corresponding implementations
The model we have developed [1] to address the above challenges is based on generative
modeling and programming techniques [8], combined with modeling-by-contract [2][4]
[5][6].

3.	 IMPLEMENTING THE TECHNIQUE

We outline an implementation of the technique in ACL (Another Contract Language), VF
(Validation Framework), and the variability resolution framework, Figure 1 and Figure 2
respectively. In our presentation, we will provide a walkthrough of our approach. In par-
ticular, we will show how the selection forces are represented through metrics, and how
the implementations are evaluated both in terms of their functional and non-functional
design requirements.
Use-cases [11] are a well-established, understood and standard technique for require-
ments modeling, however, they lack precision necessary for use in executable forms of
system evaluation. Corriveau and Arnold have addressed this in ACL [2], an executable
requirements modeling language. Arnold has developed a corresponding tool, Validation

133

International Journal of Economics and Law, Vol. 3, No. 7 (2013)

Framework (VF) for evaluating .NET executables relative to ACL specified requirements
models [2].

Figure 1: Validation Framework [2]. Figure 2: Generative Framework [16].

The Validation Framework, Figure 1, allows us to evaluate candidate implementations of
ACL specified design patterns and their variants. In particular, it allows us to implement a
model of traceability from designs to implementations; specifically, from detailed design
properties, i.e. consequences, to candidate implementations.
Modeling and resolution of variability is handled through a combination of generative
modeling and contract-based techniques. The framework under development, Figure 2, is
discussed in detail by Bashardoust Tajali in [16]

5.	 CONCLUDING REMARKS

In this work we outline our novel approach to design pattern based technique for ob-
servation, measurement and reporting that we envision can be used for evaluation of
implementations relative to selected design pattern variants, intents and detailed design
properties.
Particular challenges are:

• Variability
The complexity of modeling even a few variants of a straight-forward mediator
pattern is high, let alone the ability to use that model to evaluate implementations
conformance. The challenge is unavoidable because dealing with variability is es-
sential to handling complexity in software systems.

134

A DESIGN …Radonjić V., Bashardoust T. S., Arnold D., Corriveau JP., Mihajlovic R.

• Navigation and Selection
The variants found in each pattern are points in some design subspace: the 8 vari-
ants of the Factory Method pattern define a Factory Method subspace in the larger
Creational pattern design space. [1] We can imagine the designer as a navigator in
that space, moving towards one pattern subspace over another under the influence
of forces, and selecting a particular point, i.e. variant, in that space. In these terms,
the GoF format provides a first-level, sparse description of both the space defined
by a particular pattern, and the forces acting upon a designer to select a pattern.

• Evaluating Choices
How do we evaluate that the chosen variant satisfies the specific goal and that the
implementation satisfies the properties of the design?

REFERENCE

[1] V.D. Radonjic, S. Bashardoust, J.-P. Corriveau and D. Arnold, Design Patterns – A
Modeling Challenge, Proceedings of SERP’11, Las Vegas, Nevada , USA, 2011.
(pp191-197) available at http://world-comp.org/proc2011/serp/papers.pdf

[2] D. Arnold and J.-P. Corriveau, Validation Framework and Another Contract
Language, http://vf.davearnold.ca/

[3] E. Gamma, R. Helm, R. Johnson, & J. Vlissides, Design Patterns-Elements of
Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1994).

[4] B. Meyer, “Design by Contract,” IEEE Computer, vol. 25, no. 10, pp. 40-51, October
1992.

[5] Helm, R., Holland, I., Gangopadhyay, D.: Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems. In proceedings of the Object-Oriented
Programming Systems, Languages and Applications Conference (OOPSLA’90), pp.
169-180, October 1990.

[6] J.-M. Jezequel, M. Train, and C. Mingins, Design Patterns and Contracts, Addison-
Wesley, 2000.

[7] L. Ackerman and C. Gonzalez, Pattern-Based Engineering, Successfully Delivering
Solutions via Patterns, Addison-Wesley, 2011.

[8] K. Czarnecki and U. Eisenecker: Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, June 2000.

[9] http://en.wikipedia.org/wiki/Design_Patterns
[10] M. Antkiewicz, K. Czarnecki, and M. Stephan, Engineering of Framework-Specific

Modeling Languages, IEEE Trans. Software Eng., vol. 35, no. 6, pp. 795-824, Nov/Dec
2009.

[11] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard: Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[12] J.-P. Corriveau, Traceability Process for Large OO Projects, IEEE Computer, pp. 63-
68, Sep 1996.

[13] S. Bashardoust, V.D. Radonjic and J.-P. Corriveau and D. Arnold, Challenges of
Variability in Model-Driven and Transformational Approaches: A Systematic Survey,
Workshop on Variability in Software Architecture, WICSA2011, Boulder, Colorado,
USA, 2011.

135

International Journal of Economics and Law, Vol. 3, No. 7 (2013)

[14] D. Arnold, Grocery Store (available at http://designpatterns.elmdale.ca/
TheGroceryStoreExample_V3_1.pdf)

[15] S. Bashardoust, Grocery Variability (available at: http://designpatterns.elmdale.ca/
SoheilaGroceryVariability.zip)

[16] S. Bashardoust, Generative Contracts, Doctoral Dissertation, School of Computer
Science, Carleton University, Nov 2012.

